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SUMMARY

This paper presents a stabilized mixed finite element method for the first-order form of advection–diffusion
equation. The new method is based on an additive split of the flux-field into coarse- and fine-scale
components that systematically lead to coarse and fine-scale variational formulations. Solution of the
fine-scale variational problem is mathematically embedded in the coarse-scale problem and this yields the
resulting method. A key feature of the method is that the characteristic length scale of the mesh does not
appear explicitly in the definition of the stability parameter that emerges via the solution of the fine-scale
problem. The new method yields a family of equal- and unequal-order elements that show stable response
on structured and unstructured meshes for a variety of benchmark problems. Copyright q 2008 John
Wiley & Sons, Ltd.

Received 5 October 2007; Revised 5 April 2008; Accepted 10 April 2008

KEY WORDS: stabilized methods; multiscale methods; continuous fields of arbitrary order; advection–
diffusion equation; equal- and unequal-order elements

1. INTRODUCTION

Advection–diffusion phenomena appear in many problems in physical sciences and engineering,
and therefore an accurate modeling of this phenomenon has been a focus of research in the field
of fluid mechanics. Advection-dominated diffusion processes are typically modeled via a scalar-
valued advection diffusion equation that also serves as a vehicle to study the more advanced flow
models, namely, the Navier–Stokes equations. For the advection-dominated case, this equation
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1322 A. MASUD AND J. KWACK

becomes hyperbolic and develops sharp features in the solution. Classical numerical methods for
the advection-dominated cases result in non-convergent solutions. Specifically, methods that are
based on the standard Galerkin finite element approach lack stability that manifests itself in terms
of non-physical oscillations. Various approaches based on stabilized methods [1–6], space–time
finite element methods [7, 8] and discontinuous Galerkin methods [9] have been proposed in the
literature. For a review of various successful approaches for advection–diffusion equation, see
Franca et al. [10] and references therein.

The present paper is an extension of our earlier efforts in developing stabilized/multiscale
formulations for the advection–diffusion equation [5] and for the convective–diffusive heat transfer
[11]. In the present paper we write the system in its first-order form via introduction of the flux of
the scalar field as an additional unknown. This formulation is typically suited for many problems
from engineering science where higher accuracy of the flux is important, namely, porous media
flows where the scalar field represents pressure, and flux represents the velocity field. An interested
reader is referred to a recent paper by Rajagopal [12] that presents a hierarchy of pressure–velocity
models for flows of incompressible fluids through porous media. The proposed mixed form is
also applicable to convective–diffusive heat transfer where the unknown scalar field and its flux
represent temperature and temperature-flux, respectively. A first-order form of the convection–
diffusion equation has been pursued in [13]. However, developing finite element approximations of
these spaces, which satisfy the celebrated Babuska–Brezzi, or inf–sup, stability condition [14, 15],
is a challenging task. A literature review reveals that several elegant solutions to this problem
have been proposed (see Raviart and Thomas [16], Brezzi et al. [17–19], Nedelec [20, 21], and
Thomas [22]). These discrete spaces have been used successfully in numerous applications. Good
accuracy has been attained for both velocity and pressure, and mass conservation is achieved
locally (i.e. element-wise) as well as globally. However, this approach also has its drawback:
complexity. Different interpolations are required for pressure and velocity and implementation is
particularly complicated in three dimensions. To overcome the compatibility condition typical of
mixed methods, Hughes and colleagues introduced Streamline-Upwind-Petrov–Galerkin (SUPG)
technique [4, 23] that turned out to be the forerunner of the more general stabilized finite element
method called the Galerkin/Least-squares (GLS) method. In a relatively recent effort, Masud and
Hughes [24] presented a new mixed stabilized method for Darcy equation that was extended to
discontinuous Galerkin method in Hughes et al. [25] and Brezzi et al. [26], and to Darcy–Stokes
equation in Masud [27].

One of the objectives of this paper is to demonstrate that using the first-order form of the
advection–diffusion equation that leads to mixed methods, one can develop simple and robust
stabilization techniques. We employ Hughes’ variational multiscale method [28]with the underlying
philosophy of strengthening the classical variational formulation so that discrete approximations,
which would otherwise be unstable, become stable and convergent. An interesting aspect of the
new variational formulation is that an explicit appearance of the characteristic length scale of the
mesh does not take place in the structure of the stability parameter that has been derived via
the solution of the fine-scale problem. This may be contrasted with most stabilized methods in
which mesh-dependent parameters appear that may be thought of as arising from elimination of
unresolved scales in a multiscale decomposition of the solution (see Hughes [28] and Hughes
et al. [29] for elaboration).

An outline of the paper is as follows. Section 2 presents the boundary value problem for
advection–diffusion equation that is written in its first-order form. Section 3 presents the standard
weak form of the problem. Section 4 presents the new stabilized form that is derived based
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A STABILIZED MIXED FINITE ELEMENT METHOD 1323

on multiscale decomposition of the velocity field. Numerical results are given in Section 5 and
conclusions are drawn in Section 6.

2. THE FIRST-ORDER FORM OF THE ADVECTION–DIFFUSION EQUATION

Let �⊂Rnsd be an open bounded region with piecewise smooth boundary �. The number of
space dimensions, nsd, is equal to 2 or 3. The advection–diffusion equation can be written in the
first-order form as

1

�
v= 1

�
ap−∇ p on � (1)

divv=� on � (2)

where p is the scalar unknown field that in the present context is considered as the pressure field, v
is the flux-field that is considered as the velocity field, a is the given advective flow field, assumed
solenoidal, i.e. ∇ ·a=0. � is the diffusion parameter and � is the source term. We split the total
flux into advective and diffusive parts v=va+vd, where va=ap is the advective velocity, and
vd=−�∇ p is the diffusive velocity.

We define the normal component of the given advective flow as �n =n·a, where n is the unit
outward normal to�. Let {�−,�+} and {�g,�h} be the partitions of�, where�− ={x∈�|�n(x)<0}
is the inflow boundary, and �+ =�−�− is the outflow boundary. Consequently, part of the
boundary where Dirichlet boundary conditions are specified is further split into inflow and outflow
Dirichlet boundaries, defined as �±

g =�g∩�±. Similarly, part of the boundary where Neumann
boundary conditions are specified is also further split into inflow and outflow Neumann boundaries,
defined as �±

h =�h∩�±. With the definitions of the inflow and outflow boundaries given above, the
given normal advective flow field on the inflow boundary �− is expressed as �−

n =(�n−|�n|)/2; and
given normal advective flow field on the outflow boundary �+ is expressed as �+

n =(�n+|�n|)/2.
To the governing equations (1) and (2), we add the following boundary conditions:

v ·n=�− on �−
gv

(velocity boundary condition on inflow) (3a)

vd ·n=�+ on �+
gv

(velocity boundary condition on outflow) (3b)

p=g on �gp (pressure boundary condition) (4)

where (3a) and (3b) represent the total normal velocity and the diffusive normal velocity conditions
on the inflow and the outflow Dirichlet boundaries, respectively. Accordingly, �− is the prescribed
normal total velocity on the inflow, �+ is the prescribed normal diffusive velocity on the outflow
Dirichlet boundaries, and g is the prescribed pressure boundary condition on �gp .

3. WEAK FORM OF THE PROBLEM

The appropriate spaces of functions for the velocity and the pressure fields are H(div,�) and
L2(�), respectively. H(div,�) is the space of Lebesgue square-integrable vector fields whose
divergence is also Lebesgue square-integrable. L2(�) is the space of Lebesgue square-integrable
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1324 A. MASUD AND J. KWACK

functions defined on the domain �. For a detailed exposition on the functional spaces, see Brezzi
and Fortin [30].

Let

H(div,�)={v|v∈(L2(�))nsd,divv∈L2(�), trace(v ·n)=�− ∈H−1/2(�−
gv

)} (5)

S={v|v∈H(div,�),v ·n=�− on �−
gv

,vd ·n=�+ on �+
gv

} (6a)

V={w|w∈H(div,�),w ·n=0 on �−
gv

} (6b)

P=
{
p|p∈L2(�), p=g if �gp �=∅,

∫
�
pd�=0 if �gp =∅

}
(6c)

The formal statement is: Find v∈S, p∈P such that for all w∈V, q∈P

(
w,

1

�
v
)

−
(
w,

1

�
ap

)
−(divw, p)+(q,divv)+

(
w ·n,

1

�n
v ·n

)
�+
gv

=(q,�)+
(
w ·n,

1

�n
�+

)
�+
gv

(7)

where (·, ·)=∫
� (·)d� is the L2(�)—inner product.

We write the standard weak form in an abstract form: Find V={v, p}∈S×P such that, for all
W={w,q}∈V×P,

B(W,V)= L(W) (8)

B(W,V)=
(
w,

1

�
v
)

−
(
w,

1

�
ap

)
−(divw, p)+(q,divv)+

(
w ·n,

1

�n
v ·n

)
�+
gv

(9)

L(W)=(q,�)+
(
w ·n,

1

�n
�+

)
�+
gv

(10)

Remark 1
Equation (7) presents the mixed weak form of the problem. It is well documented that within
the framework of standard Galerkin method only certain combinations of velocity and pressure
interpolations are stable. In the following sections we will develop a modified formulation that is
inherently more stable and therefore accommodates arbitrary velocity–pressure interpolations that
are convenient from a practical implementation view point.

4. THE VARIATIONAL MULTISCALE METHOD

We consider discretization of the domain into non-overlapping subregions/elements. The sum of
the interiors of these subregions/elements is indicated as �′, and sum over element boundaries is
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A STABILIZED MIXED FINITE ELEMENT METHOD 1325

indicated as �′:

�′ =
numel⋃
e=1

(int)�e (elem. interiors) (11a)

�′ =
numel⋃
e=1

�e (elem. boundaries) (11b)

We assume an overlapping additive decomposition of the velocity field into coarse or resolvable
scales, and fine or subgrid scales. Likewise, we assume a similar sum decomposition of the
weighting function into coarse and fine scales, and consider the case where v′(x)=w′(x)=0 on �′:

v(x)= v(x)︸︷︷︸
coarse scale

+ v′(x)︸︷︷︸
fine scale

(12)

w(x)= w(x)︸︷︷︸
coarse scale

+ w′(x)︸ ︷︷ ︸
fine scale

(13)

Remark 2
The assumption that fine scales vanish at the inter element boundaries helps in keeping the
presentation of ideas simple. However, it is not a limitation of the present method. Relaxing
this restriction would require Lagrange multipliers to enforce the inter element continuity of the
fine-scale fields [31].

We substitute (12) and (13) into (7) and this leads to a modified variational form.

(
w+w′, 1

�
(v+v′)

)
−

(
w+w′, 1

�
ap

)
−(div(w+w′), p)+(q,div(v+v′))

+
(

(w+w′) ·n,
1

�n
(v+v′) ·n

)
�+
gv

=(q,�)+
(

(w+w′) ·n,
1

�n
�+

)
�+
gv

(14)

Using the linearity of the weighting function slot we can split (14) into a coarse-scale problem
(15), and a fine-scale problem (16). Employing the condition that v′(x)=w′(x)=0 on �′ we get

Coarse-scale problem:

(
w,

1

�
(v+v′)

)
−

(
w,

1

�
ap

)
−(divw, p)+(q,div(v+v′))

+
(
w ·n,

1

�n
v·n

)
�+
gv

=(q,�)+
(
w ·n,

1

�n
�+

)
�+
gv

(15)

Fine-scale problem: (
w′, 1

�
(v+v′)

)
−

(
w′, 1

�
ap

)
−(divw′, p)=0 (16)
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1326 A. MASUD AND J. KWACK

4.1. Solution of the fine-scale problem

We first consider the fine-scale problem given by Equation (16), which, because of the assumption
on the fine-scale field, is defined over �′. Our objective is to solve (16) and extract the fine-scale
flux field v′ that can then be substituted into (15) thereby eliminating the explicit appearance of
v′ in the coarse-scale problem (15) while modeling the effects of the fine scales.

We keep the fine-scale velocity term on the left-hand side of (16) and take all the remaining
terms to the right-hand side:(

w′, 1
�
v′

)
�′

=−
(
w′, 1

�
v
)

�′
+

(
w′, 1

�
ap

)
�′

+(divw′, p)�′ (17)

where (·, ·)�′ =∑numel
e=1

∫
�e (·)d� is the L2(�′) inner product.

Applying integration-by-parts to the third term on the right-hand side of (17), employing condi-
tion that v′ =w′ =0 on �′ and then combining the terms we see that the fine-scale problem is
driven by the residual of the flux form of the Euler–Lagrange equation (1). It can be written in a
concise form as

(w′,v′)�′ =−(w′,r)�′ (18)

where r is the residual defined as r=v−ap+�∇ p. At this point one can employ either the Greens
function approach [28, 29] or the bubble function approach [3, 32] to solve (18). Equivalence
between the two approaches has been established in [33]. Following our earlier efforts in [5, 34, 35],
we adopt the bubble function approach and expand fine-scale fields as follows:

v′|�e =be(n)b (19a)

and

w′|�e =be(n)c (19b)

where be(n) represents the bubble function, b represents the coefficients for the fine-scale velocity
field, and c represents the coefficients for the fine-scale weighting function. Substituting (19a) and
(19b) into (18), taking the constant coefficients out of the integral expression, and assuming that
the projection of the coarse-scale residual over the element interiors is constant, we get

c

[∫
�e

(be)2 d�

]
b=−c

(∫
�e

be d�

)
r (20)

Solving (20) for the fine-scale coefficients b, the fine-scale field v′ can be reconstructed via recourse
to Equation (19a) as

v′(x) = −�r

= −�(v−ap+�∇ p) (21)

where the stability parameter � is defined as

�=be
(∫

�e
(be)2 d�

)−1 ∫
�e

be d� (22)
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4.2. Solution of the coarse-scale problem

With the expression for the fine scales obtained in (21) we reconsider the coarse-scale problem
given by (15). Applying integration-by-parts to the fine-scale component from the fourth term on
the left-hand side of (15) and then by combining the fine-scale terms, we get(

w,
1

�
v
)

−
(
w,

1

�
ap

)
−(divw, p)+(q,divv)+

(
1

�
w−∇q,v′

)

+
(
w ·n,

1

�n
v ·n

)
�+
gv

=(q,�)+
(
w ·n,

1

�n
�+

)
�+
gv

(23)

Substituting v′ from (21) and then substituting the residual r=v−ap+�∇ p, we get the coarse-
scale formulation:(

w,
1

�
v
)

−
(
w,

1

�
ap

)
−(divw, p)+(q,divv)+

(
w·n,

1

�n
v·n

)
�+
gv

−
(
1

�
w−∇q,�(v−ap+�∇ p)

)
�̃

=(q,�)+
(
w ·n,

1

�n
�+

)
�+
gv

(24)

It is important to note that Equation (24) is written completely in terms of the coarse-scale fields,
whereas the fine-scale flux is now being modeled via the sixth integral on the left-hand side of
(24).

4.3. The stabilized mixed form

We define the admissible space of functions for the pressure field

Q=H1(�)=
{
p|p∈L2(�),∇ p∈(L2(�))nsd, p=g if �gp �=∅,

∫
�
pd�=0 if �gp =∅

}
(25)

The stabilized/multiscale mixed form is: Find V∈S×Q such that, for all W∈V×Q,

Bstab(W,V)= Lstab(W) (26)

where the bilinear form Bstab(W,V) and the linear form Lstab(W) are presented as follows:

Bstab(W,V)= B(W,V)+
((

−1

�
w+∇q

)
,�(v−ap+�∇ p)

)
(27)

Lstab(W)= L(W) (28)

and B(W,V) and L(W) are given by (9) and (10), respectively.

Remark 3
The new stabilized form given in (26)–(28) is different from the SUPG and GLS stabilized forms
as well as the form obtained based on adjoint-stabilization concepts.
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1328 A. MASUD AND J. KWACK

Remark 4
An interesting aspect of the new variational formulation is that the definition of the stabilization
parameter derived in (22) is free of the explicit appearance of the characteristic length scale of the
mesh. This may be contrasted with most stabilized methods in which mesh-dependent parameters
appear that may be thought of as arising from elimination of unresolved scales in a multiscale
decomposition of the solution (see [28, 29] for elaboration).
Remark 5
If we set a=0 in (27), we recover the stabilized mixed continuous form for the Darcy flow
equations presented in [24].

4.4. Design of bubble functions for the first-order from of advection–diffusion equation

This section presents derivation of bubble functions for the first-order form of the advection–
diffusion equation. The stabilization parameter � for the second-order form of the advection–
diffusion equation presented in Hughes et al. [7], Franca et al. [10], and Harari et al. [36] is order
O(h/|a|) in the advection-dominated case, i.e. for high Peclet number flows. However, for the
diffusion-dominated case where Peclet number Pe�1, stabilization parameter � is order O(h2/�).
Our objective is to design bubble functions that yield stabilization parameter � that asymptotes to a
value of �=0.5 for a=0, which in the present context is the Darcy limit proposed in [24]. For the
advection-dominated case, we want that stabilization parameter asymptotes to �	1, which is the
value attained in (22). In the following we design bubble functions that when substituted in (22)
yield the desired behavior of � that is shown in Figure 1 and is given by the following equation:

�(Pe)=− a

Pe+2a
+1 (29)

where a is the slope of the curve at Pe=0.
The design conditions for the bubble function be(n) for one-dimensional problem are

For |a|h/�=0, �= 1
2 ; Darcy limit (a=0⇒Pe=0) (30)

For |a|h/��1, �	1; Advection-dominated limit (Pe�1) (31)

Let us assume the function to be of the form

be=(1−�2)n, n>0 (32)

and employ the following two design conditions:

be(�=±1)=0 and maxbe(�)=1, �∈[−1,1] (normalization) (33)

Figure 1. Stabilization parameter � as a function of Pe.
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With the objective of economizing the cost of computation, we employ an average value of the
function � over the element. Consequently, Equation (22) becomes

�avg = 1

meas(�e)

∫
�e

�d�

= 1∫
�e d�

(∫
�e

(be)2 d�

)−1(∫
�e

be d�

)2

(34)

Using the assumed function (32) we first evaluate the following two terms to be used in (34):

∫
�e

be d�= j
∫ 1

−1
be d�= j

∫ 1

−1
(1−�2)n d�= j

�1/2�(n+1)

�

(
n+ 3

2

) (35)

∫
�e

(be)2 d�= j
∫ 1

−1
(be)2 d�= j

∫ 1

−1
(1−�2)2n d�= j

�1/2�(2n+1)

�

(
2n+ 3

2

) (36)

where �(x)=∫ ∞
0 t x−1e−t dt , and ‘n’ is the power of the assumed function that is obtained by

equating (29) and (34). Substituting (35) and (36) into (34) and simplifying the expression, we get

�avg= 1∫
�e be d�

(∫
�e

(be)2 d�

)−1(∫
�e

be d�

)2

= (1+2n)��(n+1)�(2n+1.5)

4n+1�(n+1.5)3
(37)

Employing a numerical approach and equating the right-hand sides of (29) and (37), one can
determine the value of n that when substituted in (32) yields the desired bubble function
(Figure 2). Table I shows the values of n and � as a function of Peclet number Pe. Table II

Figure 2. Bubble functions for various values of Pe.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1321–1348
DOI: 10.1002/fld
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Table I. Value of n and stabilization parameter � for various Pe.

Pe 4.50×106 441 216 81.0 36.0 13.5 6.00 2.25 0.00
n 0.001 0.136 0.205 0.373 0.630 1.210 2.000 3.184 5.123
� 0.999999 0.990 0.980 0.950 0.900 0.800 0.700 0.600 0.500

Table II. Peclet number (Pe) and stability parameter (�) as a function of |a|/� and h.

|a|/�=100 |a|/�=102 |a|/�=104 |a|/�=106

h Pe � Pe � Pe � Pe �

0.05 (20×20 mesh) 0.05 0.5028 5 0.6786 500 0.9912 50 000 0.9999
0.025 (40×40 mesh) 0.025 0.5014 2.5 0.6087 250 0.9826 25 000 0.9998
0.0125 (80×80 mesh) 0.0125 0.5007 1.25 0.5610 125 0.9664 12 500 0.9996

presents stability parameter � as a function of the Peclet number Pe. The initial slope of the curve
at Pe=0 is 1/4a. A value of a=4.5 has been used in the calculations (see Appendix B).

Remark 6
The slope of � at Pe=0 is 1/4a, where parameter a>0. The upper bound on parameter a is
presented in Appendix B.

5. NUMERICAL RESULTS

This section presents a sequence of problems that investigate the stability and convergence proper-
ties of the proposed formulation. Figure 3 shows a family of linear and higher-order triangular and
quadrilateral elements with equal-order pressure and velocity interpolations. Figure 4 shows the
family of unequal-order triangular and quadrilateral elements where the linear-velocity quadratic-
pressure and quadratic-velocity linear-pressure combinations are represented as v1–p2 and v2–p1,
respectively. Appropriate numerical integration rules are employed for full integration. In all the
convergence test cases presented in Sections 5.1–5.4, the underlying convective flow field is oriented
at 30◦ with respect to the X -axis.

5.1. Convergence on regular meshes for equal-order elements

The first numerical simulation is a study of convergence rates. The domain under consideration is
a biunit square, and the exact pressure solution is given by

p=sin
2�x

L
sin

2�y

L
(38)

The velocity field is computed from Equation (1); � is calculated from (2) by taking the divergence
of the velocity field, and it is then integrated over domain to drive the problem.
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Figure 3. Family of continuous equal-order elements.

Figure 4. Family of continuous unequal-order elements.

The first set of tests present numerical convergence rates of the formulation over regular grids.
Representative meshes for triangular and quadrilateral elements are shown in Figure 5(a)–(d).
Finer meshes are constructed by uniformly dividing the elements, and the same pattern of element
layout is maintained for linear and quadratic triangular and quadrilateral elements. We have plotted
convergence of the velocity and pressure fields in the L2v, L2−divv, L2 p and H1 p norms.

Table III presents values of � that are a function of the physical constants of the problem ‘|a|/�’
and the characteristic length scale ‘h’ of the mesh as presented in Section 4.4. It can be seen that
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1332 A. MASUD AND J. KWACK

(a) (b)

(c) (d)

Figure 5. Uniform meshes for convergence study: (a) 200 triangular element mesh; (b) 800 triangular
element mesh; (c) 100 quadrilateral element mesh; and (d) 400 quadrilateral element mesh.

Table III. Variation in the value of � as a function of mesh refinement (|a|/�=112).

Mesh (h) 5×5 ( 15 ) 10×10 ( 1
10 ) 20×20 ( 1

20 ) 40×40 ( 1
40 ) 80×80 ( 1

80 )

� 0.8645 0.7867 0.7071 0.6258 0.5719

for given physical coefficients as the mesh is refined, element Peclet number decreases, and that
results in a decrease in the value of stabilization parameter �. This is a feature that is common
with the stabilization parameters for the second-order form of the advection–diffusion equation
presented in Hughes et al. [7], Franca et al. [10], Harari et al. [36], which scale as O(h/|a|) in
the advection-dominated cases.

Figure 6(a)–(d) presents numerical convergence rates on regular meshes for equal-order
continuous-field elements for |a|/�=1.41, and this corresponds to the low Peclet number case.
Similarly, Figure 7(a)–(d) presents numerical convergence study for |a|/�=112, and this corre-
sponds to the high Peclet number case. In all the test cases, the convergence rates for L2 p and
H1 p are optimal in the norms considered. Convergence rates for L2v and L2−divv for the 3-node
triangles and 4-node quadrilaterals are optimal in the norms considered. However, rates for L2v
and L2−divv for the 6-node triangles and 9-node quadrilaterals are sub-optimal, i.e. they are one
order less as compared with their corresponding norms.
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Figure 6. Convergence rates on regular meshes for equal-order continuous-field elements (|a|/�=1.41):
(a) equal-order bilinear quads; (b) equal-order linear triangles; (c) equal-order biquadratic quads; and

(d) equal-order quadratic triangles.

5.2. Convergence on regular meshes for unequal-order elements

This section shows convergence rates for unequal-order continuous-field elements on regular
meshes shown in Figure 5. Linear-velocity quadratic-pressure and quadratic-velocity linear-pressure
combinations are indicated as v1–p2 and v2–p1, respectively. Figures 8 and 9 present conver-
gence rates for |a|/�=1.41 and 112 that correspond to low and high Peclet numbers, respectively.
Linear-velocity quadratic-pressure (v1–p2) combination for both element types result in optimal
convergence rates for all the norms considered. On the other hand, quadratic-velocity linear-pressure
(v2–p1) combination for both element types results in convergence rates for L2 p and H1 p that
are optimal in the norms considered. However, rates for L2v and L2−divv are sub-optimal, i.e.
they are one order less compared with their corresponding norms.

5.3. Convergence on unstructured and graded meshes

This section presents convergence rates on unstructured and graded meshes. For the finer triangular
meshes, the layout of the elements is maintained during successive mesh refinements shown in
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Figure 7. Convergence rates on regular meshes for equal-order continuous-field elements (|a|/�=112):
(a) equal-order bilinear quads; (b) equal-order linear triangles; (c) equal-order biquadratic quads; and

(d) equal-order quadratic triangles.

Figure 10(a) and (b). The finer quadrilateral meshes are constructed by uniformly bisecting the
underlying elements in the coarse meshes shown in Figure 10(c) and (d).

Figure 11 presents the convergence rates for equal-order pressure–velocity elements for |a|/�=
112 on unstructured meshes shown in Figure 10. In all the test cases, the convergence rates for
L2v, L2 p, L2−divv and H1 p are nearly optimal in the norms considered. Similar trends in
convergence rates are observed for the low Peclet number case, i.e. |a|/�=1.41, and are therefore
not shown here.

5.4. Convergence on composite meshes

Figure 12 shows composite meshes that are developed by combining linear triangles and bilinear
quadrilaterals, and quadratic triangles and biquadratic quadrilaterals in the same computational
domain. Figures 13 and 14 present convergence rates for equal-order continuous-field elements for
|a|/�=1.41 and 112, respectively. In all the test cases, the convergence rates for L2 p and H1 p are
optimal in the norms considered. Convergence rates for L2v and L2−divv for the linear meshes
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Figure 8. Convergence rates on regular meshes for unequal-order continuous-field elements
(|a|/�=1.41). (a) 6-node triangles: v1–p2; (b) 9-node quadrilaterals: v1–p2; (c) 6-node

triangles: v2–p1; and (d) 9-node quadrilaterals: v2–p1.

are optimal in the norms considered. However, rates for L2v and L2−divv for the quadratic
meshes are sub-optimal, i.e. they are one order less compared with their corresponding norms.

5.5. The five-spot problem

The five-spot problem is a mathematically rough problem with prescribed velocity at the source
and sink. The lower left corner represents the source whereas the upper right corner represents the
sink (see Figure 15). Owing to symmetry of the five-spot problem, zero normal flow is prescribed
along the boundaries. We assumed that the divergence of the velocity field � consists of Dirac
delta functions acting at source and sink locations, with strength + 1

4 and − 1
4 , respectively. We

calculated an equivalent distribution of normal velocity � and drove the problem with �, setting
�=0. In the case of linear velocity elements, we assumed a linear distribution of � along the
external edges of the corner elements, which is zero at the nodes adjacent to the corner nodes.
This uniquely determines the distribution of � on the edge (see Figure 16(a)). In the case of
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Figure 9. Convergence rates on regular meshes for unequal-order continuous-field elements
(|a|/�=112). (a) 6-node triangles: v1–p2; (b) 9-node quadrilaterals: v1–p2; (c) 6-node triangles:

v2–p1; and (d) 9-node quadrilaterals: v2–p1.

quadratic velocity elements, we assumed a parabolic distribution along the external edges of the
corner elements, which is zero, and has zero derivative at the element vertex nodes away from the
corner. Again, this uniquely defines the distribution of � along the edge (see Figure 16(b)).

In this problem, the convective flow field a is directed along 45◦ with respect to the
X -axis, i.e. along the main diagonal from source to sink. Figure 17(a) and (b) presents the
computed pressure field for 4-node continuous-field elements.

5.6. The five-spot problem on checkerboard domain

This simulation tests the formulation for cases in which there are abrupt changes in the coefficients
associated with a checkerboard domain. We consider the five-spot problem described earlier, now
zoned as shown in Figure 18. Figure 19(a) shows pressures for |a|/�=1.41 in zones I and IV, and
|a|/�=14.1 in zones II and III, for continuous-field, bilinear, equal-order quadrilaterals. Similarly,
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(a) (b)

(c) (d)

Figure 10. Unstructured meshes used for convergence study: (a) coarse triangular mesh; (b) fine triangular
mesh; (c) coarse quadrilateral mesh; and (d) fine quadrilateral mesh.

Figure 19(b) shows pressures for |a|/�=1.41 in zones I and IV, and |a|/�=141 in zones II and III.
In both the cases there are no oscillations in the pressure field, an indication of robustness.

5.7. Advection in a rotating flow field

This problem tests the method for high Peclet number flows and is used to assess solutions that
are essentially purely advective in nature. The problem is defined on a unit square of coordinates
−0.5�x, y�0.5, where the flow velocity components are given by

a1=−y, a2= x (39)
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Figure 11. Convergence rates on unstructured–graded meshes for equal-order continuous-field elements
(|a|/�=112): (a) equal-order linear triangles; (b) equal-order bilinear quads; (c) equal-order quadratic

triangles; and (d) equal-order biquadratic quads.

Along the external boundary pressure and normal velocity are zero. Along the internal boundary
(OA) pressure profile is

p= 1
2 (cos(4�y+�)+1), −0.5�y�0 (40)

A schematic diagram of the problem statement is shown in Figure 20.
The diffusivity is �=10−6. A uniform mesh with 30×30 equal-order 4-node elements is

employed. Figure 21(a) shows the elevation plots for the GLS method that is obtained via the
second-order form of the advection–diffusion equation, and Figure 21(b) shows the elevation plot
for the present method. This problem has a smooth exact solution and therefore both methods
perform well. Elevation plot for the equal-order 3-node triangles is shown in Figure 22(a). For the
lower-order elements, i.e. 4-node quadrilaterals (Figure 21(b)) and 3-node triangles (Figure 22(a)),
there are small oscillations that disappear as the order of the polynomials is increased, e.g. 9-node
equal-order quadrilaterals shown in Figure 22(b). A similar smooth profile was attained for the
6-node equal-order triangles and is therefore not presented here.
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Figure 12. Composite meshes used for convergence study.

Figure 13. Convergence rates on composite meshes for equal-order continuous-field
elements (|a|/�=1.41): (a) equal-order bilinear quads and triangles and (b) equal-

order biquadratic quads and triangles.

5.8. Advection skew to the mesh

This numerical simulation is also a standard benchmark problem for high Peclet number flows. It
is a rough numerical test in that various layers are present in the exact solution. In this problem
a discontinuity in the data at the boundary is propagated into the domain, which creates an
internal layer. Domain under consideration is a biunit square and uniform meshes with 30×30 and
40×40 equal-order 4-node quadrilateral elements are used. In addition, the problem is subjected to
homogeneous essential boundary conditions at the outflow boundary, which gives rise to outflow
boundary layers (see Figure 23 for the problem statement). We consider diffusivity �=1×10−2

that yields a Peclet number Pe=uLy/�=100 for this flow. Results for �=arctan=1.0 for the
proposed method for the 4-node quadrilaterals are shown in Figure 24(a) and (b), respectively.
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Figure 14. Convergence rates on composite meshes for equal-order continuous-field elements (|a|/�=112):
(a) equal-order bilinear quads and triangles and (b) equal-order biquadratic quads and triangles.
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Figure 15. Problem with point source and sink, commonly called the five-spot problem.
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Figure 16. (a, b) Distribution of � along the corner elements at the source. The distribution
of � at the sink is the same with opposite sign.
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Figure 17. Computed continuous pressure field for 4-node elements: (a) 100 4-node elements, |a|/�=1.41
and (b) 400 4-node elements, |a|/�=1.41.

Figure 18. Checkerboard domain with discontinuous coefficients.

Note that all solutions present oscillations in the thin layer regions, as expected from local error
analysis and numerical results presented in [36]. In these problems, results for the Galerkin method
are highly oscillatory and consequently they are not shown here. Similarly, Figure 25(a) and (b)
present the results for the equal-order 9-node quadrilaterals.

6. CONCLUDING REMARKS

We have presented a new stabilized finite element method for the first-order form of the advection–
diffusion equation. The new stabilized form is derived based on an overlapping sum decomposition
of the velocity field into coarse- and fine-scale components. Solution of the fine-scale problem
is variationally embedded in the coarse-scale problem and this step also yields the structure of
the stabilization parameter. The key ingredient in the formulation is a volumetric, residual-based,
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Figure 19. Computed continuous pressure for the checkerboard domain: (a) Zone I, IV: |a|/�=1.41
Zone II, III: |a|/�=14.1 and (b) Zone I, IV: |a|/�=1.41 Zone II, III: |a|/�=141.

Figure 20. Schematic diagram of the problem.

stabilization term that is free of an explicit appearance of the characteristic length scales of the
mesh. We perform fairly extensive numerical tests involving two-dimensional equal-order and
unequal-order velocity–pressure elements. Linear and quadratic triangles and quadrilaterals are
tested for structured as well as for distorted and unstructured meshes. The new formulation is
convergent for all combinations of continuous pressure and continuous velocity interpolations.
For lower-order elements, optimal convergence rates are attained for L2v, L2−divv, L2 p and
H1 p in the norms considered. For all equal- and unequal-order combinations in the higher-order
elements, optimal convergence rates are attained for L2 p and H1 p in the norms considered.
However, convergence rates for the velocity in L2v and its divergence in L2−divv are one order
less than their corresponding norms. We also perform several tests of robustness involving elliptic
singularities (the five-spot problem) and discontinuous coefficients associated with a checkerboard
domain. Two test cases of high Peclet number flows, one with a smooth solution and the other
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Figure 21. Computed pressure field for the rotating hill problem: (a) 900 4-node element mesh (GLS
method) and (b) 900 4-node element mesh (present method).

Figure 22. Computed pressure field for the rotating hill problem (various element types): (a) 1800 3-node
element mesh (present method) and (b) 225 9-node element mesh (present method).

with sharp layers, are also carried out, which are an indicator of the robustness of the proposed
method.

APPENDIX A: FIRST-ORDER FORM OF THE ADVECTION–DIFFUSION EQUATION

The advection–diffusion equation is typically written in the second-order form as

a ·∇ p−��p=� on � (A1)
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Figure 23. Schematic diagram of the problem.

Figure 24. Computed pressure field for the skew advection problem (4-node quadrilaterals):
(a) advection skew to the mesh for arctan 1 (900 4-node element mesh) and (b) advection skew

to the mesh for arctan 1 (1600 4-node element mesh).

where p is the unknown scalar field, a(x) is the given flow velocity that is assumed solenoidal,
i.e. ∇ ·a=0 in �,�=�(x)>0 represents diffusivity, and �(x) is the prescribed source function.
Introducing v=ap−�∇ p, (A1) can be written as

v=ap−�∇ p on � (A2)

divv=� on � (A3)

The set of equations (A2) and (A3) also represent convective–diffusive heat transfer wherein p
represents the temperature field and v represents the temperature-flux field.
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Figure 25. Computed pressure field for the skew advection problem (9-node quadrilaterals):
(a) advection skew to the mesh for arctan 1 (225 9-node element mesh) and (b) advection skew to

the mesh for arctan 1 (400 9-node element mesh).

Figure B1. Definition of 	(�).

APPENDIX B: DETERMINATION OF THE UPPER BOUND ON THE INITIAL
SLOPE FOR � VERSUS Pe CURVE

In GLS method for advection-diffusive equation presented in Hughes et al. [7], the definition of
stability parameter is given as �= 1

2 (h/|a|)�(�), where the function 	(�) is shown in Figure B1. The
transition Peclet number �t =1/m�c2/4, where c is the constant in the inverse estimate presented
in Hughes et al. [7].

We employ this idea to obtain a smooth � versus Pe curve with a value of �=0.5 at Pe=0
(which is the Darcy limit given in [24]) and it asymptotes to �	1 in the advection-dominated
case. We set Pet =2�t�c2/2 as the transition point between diffusion and advection-dominated
branches as shown in Figure B2.
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Figure B2. Design condition for the initial slope for the smooth � versus Pe curve.

The design condition for the parameter ‘a’ that defines the initial slope of � versus Pe curve
employed in the design of the bubble function (presented in Section 4.4) is obtained in the limit
as the residual R approaches zero. Let Pemax represent a sufficiently high Peclet number. We want

R=
∫ Pet

0
(�1−�)dPe+

∫ Pemax

Pet
(�2−�)dPe→0 (B1)

where �=−a/(Pe+2a)+1, �1=(1/(2Pet ))Pe+ 1
2 , and �2=1.

R =
∫ Pet

0

(
1

2Pet
Pe+ 1

2
+ a

Pe+2a
−1

)
dPe+

∫ Pemax

Pet

(
1+ a

Pe+2a
−1

)
dPe

=
[

1

4Pet
Pe2− 1

2
Pe

]Pet

0
+[a ln(Pe+2a)]Pemax

0

= Pet
4

− Pet
2

+a ln

(
Pemax+2a

2a

)

∼= −Pet
4

+a ln(Pemax) (B2)

Using a high enough Peclet number (say Pemax=103) and setting (B2) equal to zero, we get

a= Pet
4

1

ln(Pemax)
= Pet

27.63
� c2

55.26
(B3)

where we have used Pet =2�t�c2/2. This yields the initial slope of the curve defined as 1/4a:

The initial slope= 1

4a
�13.815

c2
(B4)

where ‘c’ is the constant in the inverse estimate presented in [7].
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